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ABSTRACT

A fundamental equation of state has been developed for 1,1,1-trifluoroethane

(R-143a) in the form of dimensionless Helmholtz free energy. The experimental

thermodynamic property data which cover temperatures from the triple-point (161 K) to

433 K and pressures up to 35 MPa are used to develop the present equation, and they

are represented by the present equation within their reported experimental uncertainties:

0.1% in density both for vapor and liquid phase P-ρ-T data, 1% in isochoric specific

heat-capacities, and 20 ppm in vapor phase speed-of-sound data. The range of validity of

the present model is confirmed to cover temperatures 160 to 650 K and pressures up to

50 MPa according to an excellent thermodynamic behavior of the isobaric specific heat-

capacity values in entire fluid phase which are derived from the developed equation of

state.
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1. INTRODUCTION

The binary and ternary refrigerant mixtures containing 1,1,1-trifluoroethane (R-

143a) are the most promising candidates to replace a conventional azeotropic refrigerant

R-502 which is currently being used exclusively for low-temperature refrigeration

systems. The equation of state for R-143a is urgently needed not only to represent the

thermodynamic properties for the pure refrigerant of R-143a, but also, as a basic

equation, to develop a thermodynamic model for refrigerant mixtures containing R-143a.

Like other HFC refrigerants considered as substitutes for CFC’s and HCFC’s, the

thermodynamic properties of R-143a have been investigated rather extensively in recent

years. Available experimental data include 874 points of P-ρ-T data in vapor phase, 1535

in liquid phase, 460 points of essential thermodynamic property data along the

coexistence curve and 854 points of caloric property data. The temperature and pressure

ranges of the experimental thermodynamic properties accumulated are wide enough, and

the uncertainties of those data are reliable enough to develop a so-called wide-range

equation of state.

In this paper, an equation of state explicit in the dimensionless Helmholtz free

energy is presented. A regression analysis developed by Wagner [1] is used to find the

suitable structure of the equation with respect to the linear data, while a nonlinear

optimization method proposed by Ahrendts and Baehr [2] is adopted to modify the

equation on the basis of available thermodynamic property data.

All the equations and the temperature values in this paper are given on the

International Temperature Scale of 1990 (ITS-90).

2. EXPERIMENTAL DATA SOURCE

It is needless to mention that not all of the existing thermodynamic property

data is selected as the input data to develop the present equation of state. A selection of

the input data has been done on the basis of an analysis of the experimental uncertainties

reported, the magnitude of their scatter and the thermodynamic consistency with other

data sets.



The observed critical temperature and density values by Aoyama et al. [3],

T*=345.860.01 K, and ρ*=4341 kgm-3, are selected as the numerical constants to define

the reduced density δ  (=ρ/ρ*) and inverse reduced temperature τ  (=T */T ) which are

used as the independent variables in the present modeling.

Eight points of the ideal gas isobaric specific heat-capacity values, Cp
0  , by Gillis

[4] are used to establish a Cp
0  correlation at the ideal gas state. These data are derived

from the speed-of-sound measurements for temperatures from 250 to 400 K. Taking into

account the contribution of anharmonicities, Yokozeki et al. [5] recalculated the ideal

gas isobaric specific heat-capacity values based on the spectroscopic data. The calculated

results between 160 K ( triple-point temperature) and 700 K are also selected as

additional input data in the present study.

Five hundred and twenty-six vapor phase P-ρ-T data of de Vries [6], which

cover the range of temperatures 263-433 K and pressures 0.02-20.6 MPa, are selected as

the basic data for vapor phase. On the other hand, in the liquid phase, 536 P-ρ-T data of

de Vries are used which cover the range of 243-393 K and 1.48-18.1 MPa. In addition,

102 P-ρ-T data of Magee [7] beyond the range in which de Vries’ data exist are used

too.

The vapor-pressure data observed by de Vries [6] are selected to represent the

thermodynamic properties at saturation. The measurements by Russel et al. [8] are also

added so as to represent the behavior at lower temperatures where no other data exist.

The input data thus selected from those by de Vries and Russel et al. cover the

temperature range of 173-345 K.

One hundred and fifty-one isochoric specific heat-capacity data in liquid phase

as well as those at the saturated-liquid condition from triple-point to critical temperature

both reported by Magee [7] are also selected as the input data.  Eighty-five speed-of-

sound measurements in vapor phase by Gillis [4] are also included among the input data

sets for the present purpose.

3. EQUATION OF STATE



The developed equation of state for R-143a given in the dimensionless

Helmholtz free energy, Φ( , )τ δ , is splitted into two parts: an ideal part, Φ0 , which

describes the ideal gas behavior and a residual part, Φr , which is responsible for the

representation of thermodynamic behavior of the real fluid, as given below ;

Φ Φ Φ( , ) ( , ) ( , )τ δ τ δ τ δ= = +
A

RT
r0  

(1)

where A  is the specific Helmholtz free energy. R R Mm=  is the gas constant of R-143a

with the universal gas constant Rm = 8.31451 Jmol-1K-1 and molar mass M = 0.084041

kgmol-1 . τ  and δ  are the independent variables mentioned previously.

The ideal part, Φ0 ( , )τ δ , of the present equation of state is given by
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The first term comes from the ideal gas law, i.e., p RT= ρ . The next two

constants a1
0 and a2

0 in Eq. (2) are adjusted so that the saturated liquid enthalpy and

entropy values calculated from Eq. (1) at 273.15 K are 200 kJkg-1 and 1 kJkg-1K-1 ,

respectively. These two numerical constants are naturally determined after establishing

the residual part of the equation of state. The last 4 terms in the right-hand side of Eq.

(2) are related to an empirical correlation of the ideal gas isobaric specific heat-capacity,

C Tp
0 ( )  . Initially, Eq. (2) has been developed based on the selected Cp

0  data. Later, the

coefficients a3
0, a4

0, a5
0 and a6

0 are slightly readjusted simultaneously with the

optimization of the residual part Φr  in order to take into account the caloric property

behavior of the real fluid. The final values of these coefficients thus determined are: a1
0=-

0.5556942E+0, a2
0= 0.8937480E+1, a3

0=-0.8999794E+0, a4
0= 0.1652398E+1, a5

0=-

0.6827433E+0, a6
0=-0.8113464E+1. Equation (2) is valid for temperatures from 100 to

700 K.

Two optimization strategies have been employed to establish the residual part

Φ r ( , )τ δ  of the present model. The first one consists of  the regression analysis

developed by Wagner [1] in which essential terms of significant importance are selected



from a bank of large number of terms. For R-143a, such an initial bank of terms is given

by the following expression:

Φr
i

d t

i
i

d t

i

a a ei i i i
ci

( , )τ δ δ τ δ τ δ= +∑ ∑ −                                                          (3)

It consists of polynomial terms of δ and τ and supplementary terms associated with an

exponential function, exp(-δ  ci),  where exponent ci  varies from 1 to 4. About 500 terms

are taken into consideration regarding the bank of terms given by Eq. (3).

For the purpose of applying Eq. (3) to the regression of selected input data sets

for various thermodynamic properties, they have to be divided into linear and nonlinear

data sets. The linear data such as P-ρ-T properties and isochoric specific heat-capacities

are used to find a suitable structure of the residual part Φ r ( , )τ δ . Besides the linear

experimental thermodynamic properties, two additional constraints are also included in

the present regression analysis:

            a) thermodynamic constraints at the critical point ;
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            b) the Maxwell relation regarding the saturation properties at a given

temperature ;
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where Ps denotes saturation pressure, ρ '  and ρ ' '  are saturated liquid- and vapor-

densities, respectively.

The method proposed in [2] is used for the nonlinear optimization as a next step

to readjust the coefficients of the equation of state based on all of the selected linear and

nonlinear experimental thermodynamic property data. The final form of the residual part

Φ r ( , )τ δ  thus established in the present study is

Φr
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i
i

d t c

i

a ai i i i i( , ) exp( )τ δ δ τ δ τ δ= + −
= =
∑ ∑

1

5

6

19

(6)



The numerical coefficients of ai and exponents di ,  ti and ci are listed in Table I.

4. RESULTS AND DISCUSSIONS

The critical parameter values calculated from the present equation are:

Tc=345.86 K, Pc=3.764 Mpa and ρc=434 kg/m3. The critical temperature Tc and critical

density ρc agree with the measurements by Aoyama et al. [3]. The critical pressure

calculated from the present equation differs slightly from most of the reported values

within ±5 kPa, which is, however, smaller than the uncertainty reported for the critical

pressure values.

Two triple-point temperature measurements are reported by Magee [7] and

Russel et al. [8], respectively, although no triple-point pressure and density data are

reported. The triple-point pressure estimated by Tillner-Roth [9] is 1.091 kPa

corresponding to the triple-point temperature Tt=161.34 K measured by Magee. At the

same triple-point temperature, the present model yields Tt=161.34 K, ρ t ' =1329 kg·m-3 ,

ρ t ' ' =0.068 kg·m-3 and Pt=1.080 kPa which differs from the value by Tillner-Roth [9]

only by 11 Pa.

Figure 1 shows the deviations of the reported ideal gas isobaric specific heat-

capacity values from the present equation. The data by Gillis [4] are well represented by

Eq. (1) within ±0.3%, whereas the results of Beckermann and Kohler [10] show a larger

scatter up to ±1%. Theoretical values by Chen et al. [11] are represented within ±1% for

temperatures 100 to 700 K, while the values by Yokozeki et al. [5] which include

anharmonicity corrections are well represented within ±0.4% for temperatures 160 to

700 K.

For an easier comparison of the P-ρ-T properties, we divide entire fluid phase

into following 4 regions since the quantity of data is too large.

vapor-phase region:  T  344 K, P < Ps and T  344 K, ρ  250 kgm-3

liquid-phase region:  T  344 K, P > Ps and T  344 K, ρ  650 kgm-3

near-critical region:   344 K < T 353 K and 250< ρ < 650 kgm-3

supercritical region:   T > 353 K and 250< ρ < 650 kgm-3



Figure 2 gives the relative pressure deviations of measurements by de Vries[6] in vapor-

phase region at different pressures. Most of the measurements are well represented by

the present model within ±0.05%. The lowest three isothermal Burnett measurements

which show a little different behavior from others are represented within ±0.1%. Several

data in the liquid-phase region due to the vibrating tube densimeter are represented

within ±0.2% as also shown in Fig. 2. Figure 3 shows the relative density deviations in

the liquid-phase region at different pressures. Most of the liquid-phase measurements by

de Vries[6] are satisfactorily represented within ±0.05% except several points near the

saturation which have a large scatter up to ±0.1%. The liquid-phase P-ρ-T measurements

by Magee[7] show a little higher positive deviation, but all of them are represented

within 0.2%. Measurements of de Vries in near-critical region and supercritical region

are also represented within ±0.4% in pressure deviation.

Figure 4 illustrates the vapor-pressure deviations with respect to temperature.

The experimental vapor-pressure data by de Vries [6] are represented within ±0.035%,

while those by Russel et al. [8] are represented with the deviations not more than ±50 Pa.

Figure 5 gives the deviations of isochoric heat-capacity data by Magee [7] in

liquid-phase, where the measurements from triple-point to critical temperature are well

represented within the deviation of ±1%.

Table II summarizes the result of statistic deviations analysis for all the

thermodynamic properties compared. The statistic quantities are defined by the following

expressions in which X stands for an arbitrary property. The bad data denoted by BAD in

the right-hand column is defined when the deviation exceeds ±10%.

AAD =
−

⋅
=
∑1

100%}
1N

X X

X
i cal i

cal ii

N

{( )exp, ,

,

(7)
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−
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X X
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,
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(9)

Figure 6 illustrates the isobaric heat-capacity behavior derived from the present

equation of state for the range of temperatures from triple-point to 650 K and pressures

from 0.05 to 50 MPa. This figure naturally confirms that the present model provides an

excellent thermodynamic consistency including Cp  behavior even in such an extensive

range of temperatures and pressures.
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Table I.  Numerical Constants in Eq. (6)

i                     ai ci ti di

1 0.1606645 E-1 - 0 5

2 0.4163515 E+1 - 0.5 1

3 -0.5031058 E+1 - 0.75 1

4 -0.1920208 E-1 - 2.5 2

5 0.1470093 E-2 - 2.5 4

6 0.1775429 E+0 1 0.25 3

7 -0.7316069 E-2 1 0.25 8

8 -0.9555916 E-1 1 2 3

9 -0.5822518 E+0 1 3 1

10 -0.4211022 E-3 2 3 10

11 -0.2059847 E-1 2 8 1

12 0.3711325 E-1 2 8 4

13 0.1799723 E-3 2 8 8

14 -0.4145922 E-1 2 10 2

15 0.7682566 E-4 3 8 12

16 -0.2089695 E-2 3 17 8



17 0.1958633 E-2 3 20 2

18 -0.3198325 E-5 3 35 5

19 -0.5376561 E-2 4 27 3

Table II.  Statistic Analysis of Experimental Thermodynamic Properties

Author Year Points AAD BIAS RMS MAXDEV BAD

X = P

deVries 1996 536 0.036 0.002 0.096 1.522 2

Fujiwara and Piao 1995 40 0.357 0.344 0.426 0.990 0

Giuliani et al. 1994 14 0.103 0.103 0.115 0.233 0

Giuliani et al. 1995 62 0.099 0.020 0.347 2.679 0

Mears et al. 1955 21 1.250 -1.039 1.428 2.608 0

Weber and Defibaugh 1996 117 0.049 -0.015 0.065 0.117 0

Zhang et al. 1995 84 0.063 0.001 0.079 0.193 0

X = ρ
deVries 1996 526 0.134 0.054 0.542 7.112 0

Defibaugh 1996 855 0.307 0.307 0.807 6.821 3

Magee 1996 154 0.085 0.085 0.092 0.233 0

X = Cp
0

Beckermann and Kohler 1995 9 0.479 0.461 0.531 0.832 0

Chen et al 1975 10 0.541 0.533 0.610 1.008 0

Gillis 1994 8 0.083 -0.037 0.106 -0.229 0



Mears et al. 1955 6 1.501 -0.889 1.591 -1.880 0

Smith et al. 1952 4 0.658 0.567 0.786 1.097 0

Yokozeki et al. 1997 28 0.127 -0.019 0.153 0.349 0

X = Cv

Magee 1996 159 0.511 0.348 1.120 5.999 0

X = Cp

Mukoyama et al. 1996 4 0.520 -0.391 0.714 -1.323 0

X = w

Beckermann and Kohler 1995 246 0.027 -0.012 0.032 -0.079 0

Gillis 1994 85 0.005 0.004 0.007 0.018 0

Takagi 1996 188 0.473 -0.026 0.593 2.584 2

X = B

Bignell and Dunlop 1993 3 0.659 -0.659 0.742 -1.087 0

Beckermann and Kohler 1995 9 1.564 -1.027 1.967 -3.625 0

Gillis 1994 13 1.314 1.220 1.365 1.856 0

Zhang et al. 1995 7 0.480 -0.313 0.528 -0.929 0

Table II.  Statistic Analysis of Experimental Thermodynamic Properties (continued)

Author Year Points AAD BIAS RMS MAXDEV BAD

X = Ps

deVries 1996 59 0.009 -0.001 0.013 -0.041 0

Doering 1992 31 0.305 0.166 0.383 0.998 0

Fujiwara and Piao 1995 23 0.128 0.128 0.130 0.213 0

Fukushima 1993 18 0.095 -0.024 0.167 -0.628 0

Giuliani et al. 1994 60 0.096 -0.066 0.135 -0.461 0

Giuliani et al. 1995 33 0.083 0.045 0.100 0.174 0

Mears et al. 1955 7 0.377 0.280 0.508 1.141 0

Nagel and Bier 1996 26 0.246 0.246 0.247 0.293 0

Russel et al. 1944 9 0.095 0.052 0.113 -0.197 0

Takashima and Higashi 1995 12 0.197 -0.065 0.228 -0.400 0

Wang et al. 1993 30 0.103 -0.100 0.117 -0.225 0

Weber and Defibaugh 1996 52 0.059 -0.059 0.066 -0.126 0

Widiatmo et al. 1994 12 0.324 0.324 0.388 0.774 0

Ye 1994 11 0.352 0.352 0.423 0.695 0

Zhang et al. 1995 11 0.136 0.136 0.140 0.199 0



X = ρ’

Defibaugh 1996 22 0.239 0.239 0.346 1.326 0

Doering 1992 4 2.214 2.214 2.361 3.396 0

Fukushima 1993 10 1.684 -1.684 1.722 -2.157 0

Mears et al. 1955 6 3.566 3.566 3.567 3.699 0

Widiatmo et al 1994 17 0.555 -0.555 0.579 -1.125 0

Yokoyama and Takahashi 1991 16 0.337 -0.336 0.383 -0.551 0

X = ρ’’

Aoyama et al. 1995 13 0.587 0.121 0.758 1.792 0

Fukushima 1993 7 3.838 -3.838 3.875 -4.697 0

Higashi and Ikeda 1995 5 0.764 0.289 0.937 1.681 0

X = Cv’

Magee 1996 96 0.445 -0.219 0.792 -4.382 3

X = Cp’

Russel et al. 1944 11 0.109 0.016 0.136 0.320 0

FIGURE CAPTIONS

Fig. 1.   Deviations of ideal gas isobaric specific heat-capacity values from the present

equation: () Gillis [4]; () Beckermann and Kohler [10]; () Chen et al.[11]; () Yokozeki et

al.[5]

Fig. 2.   Pressure deviations of  P-ρ-t data in vapor-phase region: () de Vries (Burnett)

[6]; () de Vries (Vibrating tube) [6].

Fig. 3.   Density deviations of P-ρ-t data in liquid-phase region: () de Vries [6]; () Magee

[7].

Fig. 4.   Vapor-pressure deviations from the present equation: () de Vries [6]; () Russel

et al. [8]; () Weber and Defibaugh [12]; () Giuliani et al. [13]; () Zhang et al. [14]

Fig. 5.   Deviations of isochoric specific heat-capacities in liquid-phase region: () Magee

[7].

Fig. 6.   Isobaric specific heat-capacity behavior derived from the present model.
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